
1 APPENDIX 2

STRESS IN A FLUID

1.1 Linear momentum principle

The lir.ear momentum principle sta;es that:

The time rate ofchange of =
momentum of a body

-------

The sum ofthe forces acting
on this body.

For the present application, the body referred to in the above statement consists of some fixed
quantity of fluid cor.tained in a material volume, Vm(t), limited by a material surface, Am(t), as
shawn in Figure 1. The momentum ofthis material volume is:

tJ.....i;-
Surface force acting C'n

dV

J p vdV .
V.(,)

(I)
The above linear momentum principle can then be written as:

d J.... ....- pvdV=L Fdt v.(,)

Figure 1 Material volume.

(2)

....
where dldt is material derivative. The forces, L F, acting on the material volume consist of
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....
body forces (usually gravitational forces) and surface forces. Representing by g the body force
per unit mass, the total body force i& given by:

(3)

For our application, g is the acceleration of the gravity.
....

The surface forces are handled in terms of the stress vector, I <nJ ,acting on a surface having a....
normal n defined as:

== lim (I'lFI.
M ....O &4)

The total surface force acting on the material volume is then written as:

(4)

Substituting Eqs. 2, 3 and 4 into the linear momentum principle, the following equation results:

(5)

for a fluid at rest the above equation becomes:

(6)

1.2 Stress Vector in a Stagnant Fluid

It is well known that a fluid will deform continuously under the effect of shear stresses and it can
only be compressed. In the light of these observations, the stress on a surface within a stagnant
fluid always acts in the direction opposite to that of the normal to this surface. In the following,
considering a fluid element in the shape cfa tetrahedrcn and Eq. 6, we will prove that the stress at
a given point in a stagnant fluid is isotropic. Fig. 2 shows the selected fluid element as well as
forces actin!'; on its bounding surfaces. Observe that all these forces are normal to the bO!Jnding
surfaces and they are in the direction opposite to that of the outwardly directed unit normals.
Table I summarises the force3 and outwardly directed unit normals for the four planes limiting
the tetrahedron. Application ofEq. 6 to the selected fluid element yields:

< >2 and < >3 show surface and volume averages ofa parameter and defined respectively as:



and

z

k
D
-j ,
.~····..r·· ...'1 "'A,
I
I
tI _

1 kpz

Figurt 2. Static stress on a tetranedron.

<I> =LfdA

2 fA dA

1
JvfdV

< >3 = fv dV '

TABLE 1

8TATIC STRESS ON A TETRAHEDRON

PLANE AREA NORMAL FORCE VECTOR

ABC M n
-+ -+n -npn

BCD M x
-+ -+

-i i px
ADe My -+ -+

-j j py
ABO M z

-+ -+
-k k pz

y
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(8)

(9)
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Referring to the Fig. 2, it can be seen that in Eq. 7 Ll.Ax, Ll.Ayand Ll.Az can be substituted with:

(10)

(II)

(12)

where n
x

' ny and n, are the cosines directors of the plane ABC; thus Eq. 7 become:

~ ~ ~ ~

< P g>3 LlV-Ll.A.(n<p. >2 -i nx <px >2 -} ny <py >2 -k nz <pz >2) = o. (13)

Dividing the 8bove equation by Ll.A. and taking the limit as Ll.A n --? 0, we will observe that the
ratio Ll.VILl.A. tends to zero and Eq. 13 becomes:

~ -+ ... -+

=-n p.+ i nxpx+} nypy+k nzpz =0 . (14)

Because ofthe limiting process (M. --+ 0 o' ~V --+ 0), in tile above equation tile average values
have beeil replaced with point valu::s. Expressing the unit normal ill terms of hs scalar compo
nents:

-+ -+ -+ -+
n= i nx+j ny+k nz

and substituting it into Eq. 14, we obtain:

-> -> ->
i nx(p. - pz)+j nip. - py)+k nip. - pz) = 0 .

In order to satisfY the above equation, all scalar components should be zero, i.e.:

p. =px =py =pz .

(15)

(16)

(17)

The above result proves that the stress at a given point in a stagnant fluid is isotropic. Dropping
the subscript n, the stress vector acting on any arbitrary surface with outwardly directed normal Ii
can be expressed as:

.... ...
t (.) = -n p . (18)

This equation indicates that the magnitude of the stress vector is equal to the p.essure and it is
oriented in the opposite direction to that of the unit normal.
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1.3 Stress in a Moving Fluid - Stress Vector and Stress Tensor

When fluids move. the study of the surface forces are more difficult. The aim of this section is to

discuss the basic nature of the stress vector. t (n) . During this review we will 2SSUme that P. v
-+

and t (n) are continuous function of the space and time. Furthermore. we will assume that the
stress vector is a continuous function of the orientation of the surface element which is identified
by the outwardly oriented unit normal. The following properties of the stress vector and stress
tensor will be proved:

). The stress vectors which act on both sides of a surface at a given point are equal in
magnitude and opposite in direction.

..
2. The stress vector may be expressed in terms of a stress tensor T as:

-+ -+ =
t n =n. T .

3. The stress tensor is symmetric:

Tij = Tji .

In order to prove the above statements. Wi>; wiil use appropriate material volumes as well as aver
ag~ values defined with Eqs. 8 and 9.

1.3.1 The relationship between the stress vectors acting on both sides of a surface at a
given point

Let us consider a material volume in the shape of a thin disk as illustrated in Fig 3 and indicate by
An(t) the area of each parallel surface, L the thickness of the disk and by AL(t) the area of the

-+
lateral surface. n and I show unit normals tc the parallel and lateral surfaces respectively. Ap-
plying the linear momentum conservation principle (Eq. 5) to the above material volume we ob
tain:

~ JV..('t) P vdV=JV.('t) P gdV+LL('t) 7(l) dA +L.('t) 7(n) dA + L,,(~} t (-n) d4 (19)

or using the volume and surface averages defined by Eqs. 8 and 9, we obtain:

Taking the limit of the above equation as L goes to zero and observing that A/(-t) also goes to
zero, we get:

limJ [7(n) +7(-n) JdA = 0 .
L-+O A.('t)

(2l)

Since this equation is true for any arb!trary surface element, we conclude that the integrand
should be: equal to zero. Therefore we obtain:
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t(-nJ

\

\

~nJ

Figure 3 Material volume having the form of an arbitrary slab.

.... ....
t (n) =- t (-n)

This the proof of the 1st st&tement.

1.3.2 The stress tensor

Let us consider an arbitrary material volume which can be expressed as:

(22)

(23)

where L is a characteristic dimension and r(t) is the shape factor. Using the linear momentum
principle (Eq. 5) and volume average cefined by Eq. 9 we cbtaii1:

....
t (n) dA (24)

Dividing the above equation by L' and taking its limit as L goes to zero, we obtain:

. 1 f ....hm-, t (n) dA = 0
L....O L A.(,)

(25)

which shows that at every point in the space, the stres~ is in equilibrium. In the following, using
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the above equation we will establish a relationship between the stress vector and the stress tensor.
To this aim, let us consider a volume element in the shape of a tetrahedron as shr)wn in Fig. 4.
The stresses acting Oil the four faces of this volume element as well as the areas associated with
them are shown in Table 2. The application ofEq. 25 to the selected volume element with the as
sumption that L2 is equal to the oblique area, M n , yields:

z

(( :1--""'"-
y

~---------::~B=-------~

1'..

Figure 4 A mat~rial volume with surface stresse:>.

-+ -+ -+ )J+ n. k ~An < t (-k) >2 =0 (26)



BCD

ADC

ABD
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TABLE 2

STRESSES ACTING ON THE ABOVE MATERIAL VOLUME (TETRAHEDRON)

PLANE AREA NORMAL STRESS VECTOR... ...
ABC M n n t(n)

~ ~ ~ ~

n.jMn --i t(_i)

~ ~ ~ ~

n.j M n -j t(-j)

-+ -+ -+ -+
n . j M n -k t (-1:)

If we carry out in Eq. 26 the division by M", we obtain:

. [-+ ...... :-+ -+; ........................
hm < t (r) >2 +n . 1< t i_i) >2 +n . J < t (-J) >2 +n . k< t (-k)

M ..-+O
(27)

Ir. the above equation, taking the limit as M n goes to zero is equivalent to taking the limit as the
characteristic length L goes to zero and during this limit taking process all average values tend to
local values. Thus, Eq. 27 becomes:

Using Eq. 22 the above equation takes tll<: following form:

... ... [...... ...... ...... ]
t (n) =n. i t (i) +j t 1;) +k t (k)

(28)

(29)

where the unit normal Ii is defined by Eq. 15.

Eq. 28 show that the stress vector acting on a surface with unit normal Ii can be expressed in...... ...
terms of the stress vectors acting on the three co-ordinate planes: t (i) , t 1;) and t (k) • In rec-
tangular co-ordinates these stress vectors are expressed as:

-+ -+ -+ -+

t (i) = i Trx+j Txy+k Txz

-+ -+ -+ -+

t 1;) =i Tyx+j Tyy+k Tyz

...... -+ -+ -+

t(k) =i Trr+j Tzy+k Tzz

(30)

(31)

(32)

where the first subscript indicates the plane upon which the stress acts ami the second subscript
indicates the direction in which the stress acts. Taking into account that in Eq. 29 the products:
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~~ ~~ ~~

i I (i) , j I 0) and k I (k)

are diadic product oftwc vectors and combining Eqs. 29, 30, 31, 32 and 15 we obtain:

or

(33)

where T is the stress tensor. Therefore, we just provecl that the stress vector acting on any arbi
trary surface can be obtained by multiplying the stres3 tensor with the unit normal to this surface.

1.4 The symmetry ofthe Stress Tel/sor

lhing a material volume which has the shape of a differential cube as shown in Fig. 5 and the an
gular momentum equation which has the fol1owing form:

d J (-> -» f (-> ...,\ J (-> -> )-d r xp v dV = r xp g) dV+ r x I (n) ciA
, v.(.) V.b) \ 04.(,)

(34)

we wil1 prove the symmetry of the stress tensor. In the above equation r is the lever arm and
Vm(,) is an arbitrary material volume surrounded a material surface A m(,). Assuming that this
arbitrary material volume can be again represented by:

(35)

and using the volume average defined by Eq. 9, Eq. 34 becomes:

(36)

Let us return now to the cubical volume element illustrated in Fig. 5 and assume that the charac
teristic length Lis:

L=t:u=by=&·

and that the origin of the co-ordinates 0 coincide with on of the comer of this element. Thus for
the selected volume element, the position vector r appearing in Eq. 36 defines any point in this
element and it tends to zero as L tends to zero. Dividing Eq. 36 by L' and taking its limit as J_
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Figure 5 Stress on a differential cube - symmetry of a stress tensor.

goes to zero we obtain:

lim L\ J (-r x l(nl)dA = 0
L-+O A.«j

(37)

The above equation shows that the torques are in local equilibrium. The mUltiplication of Eq. 37
-+ -+ -+

by i, j and k gives the X, Y and Z components of the torque. For example, Z component of
the torque for the selected volume element is as follows:
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~1,f~T._L'l - ~(T-:-L'l +L(T.,_L') ,l X-Surfaces

- ~(Tyy~,L2) + ~(Tyy,..,L2) - L(Tyx,.•,L2)
. .•

Y-Surfaces

+ .~(T",.. ,£1) - t<T",•.,,£1) ~ ~<TZy,.,£1)+ ~(TZY_'w.) = 0 .

Y-Surfaces

(38)

In the above equation, the averaging operator < >2 has heen omitted to simplifY the p~esenta

tion. We can easily observe that when L tends to zero:

therefore we obtain:

or

(39)

Txy = 1~x .

If we consider X and Y components of Eq. 37 we will find that:

(40)

and

1.5 Viscous Stress Tensor

(41)

(42)

We have seen that stagnant fluids experience only normal stress and at a given point this stress is
isotropic and oriented in the direction opposite to that of the unit normal of the surface on which
it acts. We called the magnitude of this stress "the pressure" and it is given with Eq. 18. Using the
definition of the unit tensor given with Eq. 3 in Appendix 1, Eq. 18 can also be written as:

--i> -+ _~ =
t (n) =-n p =-n . I P . (44)
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We can easily sec that the left and right product of the unit tensor with. a vector are equal and
they are also equal to the vector itself:

-+ -+-+
V.I==/.V= V (45)

In moving fllOids, besides the viscous forces due to the motion of the fluid (deformation of the
fluid) the pressures forces are also present. Therefore, it is convenient to split stress tensor into
two parts: one representing the pressure stress and the other ...i::;COU3 stress:

T =-p I + cr

and the stress vector will be written as:

(46)

(47)

.. ..
Since T and 1 lire symmetric tensors, IT also should be a symmetric tensor. Furthermcre, since

all of the off-diagonal terms of p; are zero, the all off-diagonal terms of :; and cr should be
equal:
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